Journal Article
Permanent URI for this collection
Browse
Browsing Journal Article by Subject "Antioxidant"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Antidiabetic and antihyperlipidemic effects of aqueous extract of Parquetina nigrescens in streptozotocin–nicotinamide induced type 2 diabetic rats(2021) Ojuade FI; Olorundare OE; Akanbi OB; Afolabi SO; Njan AABackground Parquetina nigrescens is among the evergreen plants native to West Africa. It is used in the management of various ailments including anemia, fever, asthma and diabetes. This study evaluated the antidiabetic and antihyperlipidemic effect of Parquetina nigrescens in streptozotocin–nicotinamide-induced type 2 diabetic rats. Methods Type 2 diabetes mellitus was induced in overnight fasted rats with a single intraperitoneal injection of streptozotocin (60 mg/kg), followed by the administration of nicotinamide (120 mg/kg) after an interval of 15 min. Diabetic rats were orally administered with; 200, 400 and 800 mg/kg of aqueous extract of Parquetina nigrescens (AEPN), metformin (180 mg/kg) and glibenclamide (1 mg/kg) for two weeks. The effect of treatments on fasting blood glucose, serum insulin, leptin, adiponectin, homa-ir, lipid profile, body weight, pancreatic antioxidants parameters, hepatic glycogen content, glucose-6-phosphate activity, α-amylase inhibition, α-glucosidase inhibition, lipase inhibition and histology of the organs were evaluated. Results Data from this study showed that treatment with AEPN produced a significant reduction (p < 0.05) in fasting blood glucose, glucose-6-phosphatase activity, serum lipase, total triglyceride, total cholesterol, low-density lipoproteins, very low-density lipoprotein, atherogenic index, coronary risk index, pancreatic α-amylase, α-glucosidase and lipase activities. Treatment with AEPN also produced a significant (p < 0.05) increase in; glucose tolerance, glycogen content, leptin, adiponectin and pancreatic antioxidants (glutathione, superoxide dismutase, catalase and high-density lipoproteins). The histology of the organ showed regeneration of the pancreatic tissue after treatment with AEPN. Conclusions This study showed that AEPN exhibited antidiabetic and antihyperlipidemic activity in streptozotocin–nicotinamide-induced type 2 diabetic rats.Item Antidiarheal activity of catechol and ethyl 5, 8,11,14,17 – icosapentanoate-rich fraction of Annona senegalensis stem bark(2022) Ahmed MU; Arise RO; Umaru IJ; Mohammed ABackground and aim Secretory diarrhea is the most common type of diarrhea. This study aimed at exploring the possible mechanism of antisecretory action of Annona senegalensis stem bark and to identify the bioactive compounds. Experimental procedure The ability of three crude extract; aqueous, dichloromethane and hexane stem bark extracts to inhibit castor oil-induced stooling in albino rats were assessed. Bioactivity guided fractionation of the most active extract was done using solvent-solvent partitioning (with hexane, dichloromethane, ethylacetate) and column chromatography. In vitro antioxidant activity of the most active sub-fraction was done using standard methods. The most active sub-fraction (25 mg/kg b. wt.) was administered to castor oil-induced diarrheal rats. Diarrheal rats small intestinal malondialdehyde concentration, antioxidant enzyme, cyclooxygenase II and Na+- K+ ATPase activities were determined using standard procedures. GC-MS analysis was done to identify the chemical compounds in the sub-fraction. Result and conclusion Aqueous extract significantly decreased the number of wet stools. Sub-fraction 1 of ethylacetate fraction of aqueous stem bark extract (EFAS1) showed the highest stool inhibition. The H2O2 scavenging activity of EFAS1 was significantly greater than ascorbic acid. The sub-fraction significantly increased (p < 0.05) the activity of catalase and Na+- K+ ATPase activities but significantly decreased the concentration of malondialdehyde and cyclooxygenase II activity. GC-MS analysis revealed that EFAS1 is rich in catechol, n-hexadecanoic acid and ethyl-5,8,11,14,17-icosapentanoate. The sub-fraction exerts its antisecretory activity by its antioxidative, inhibition of prostaglandin synthesis and stimulation of Na+- K+ ATPase properties due to the presence of catechol, n-hexedecanoic acid and ethyl-5,8,11,14,17-icosapentanoate.