Browsing by Author "Ojo SA"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Biogenic synthesis of silver nanoparticles using a pod extract of Cola nitida: Antibacterial and antioxidant activities and application as a paint additive(2016) Lateef A; Azeez MA; Asafa TB; Yekeen TA; Akinboro A; Oladipo IC; Azeez L; Ajibade SE; Ojo SA; Gueguim-Kana EB; Beukes LSThis work reports the biogenic synthesis of silver nanoparticles (AgNPs) using the pod extract of Cola nitida, the evaluation of their antibacterial and antioxidant activities, and their application as an antimicrobial additive in paint. The AgNPs were characterized with UV–Vis spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, and transmission electron microscopy (TEM). The AgNP solution was dark brown with a maximum absorbance occurring at 431.5nm. The FTIR spectrum showed strong peaks at 3336.85, 2073.48, and 1639.49cm−1, indicating that proteins acted as the capping and stabilization agents in the synthesis of the AgNPs. The AgNPs were spherical, with sizes ranging from 12 to 80nm. Energy dispersive X-ray (EDX) analysis showed that silver was the prominent metal present, while the selected area electron diffraction pattern conformed to the face-centred cubic phase and crystalline nature of AgNPs. At various concentrations between 50 and 150μg/ml, the AgNPs showed strong inhibition of the growth of multidrug resistant strains of Klebsiella granulomatis, Pseudomonas aeruginosa, and Escherichia coli. In addition, at 5μg/ml, the AgNPs completely inhibited the growth of Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Aspergillus niger, A. flavus and A. fumigatus in a paint-AgNP admixture. The AgNPs exhibited a potent antioxidant activity with an IC50 of 43.98μg/ml against 2,2-diphenyl-1-picrylhydrazyl and a ferric ion reduction of 13.62–49.96% at concentrations of 20–100μg/ml. This study has demonstrated the biogenic synthesis of AgNPs that have potent antimicrobial and antioxidant activities and potential biomedical and industrial applications. To the best of our knowledge, this work is the first to use the pod extract of C. nitida for the green synthesis of nanoparticles.