Browsing by Author "Ojo JS"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Comparative study on Radio Refractivity Gradient in the troposphere using Chaotic Quantifiers(2019) Ojo JS; Adelakun AO; Edward OVComplexity and nonlinear trend in the internal activities of the troposphere has been a great factor affecting the transmission and receiving of good quality of signals globally. In lieu of this, prediction of chaos and positive refractivity gradients for line-of-sight microwave radio paths is necessary for designing radio systems. Complexity in the troposphere due to changes in meteorological parameters can lead to the strong negative gradient (or super-refraction) which afterward lead to interference between terrestrial links and satellite earth stations. In this paper, a comparative study on the degree of complexity of Radio Refractivity Gradient (RRG) using Chaotic Quantifiers (CQ) such as Phase Plot Reconstruction (PPR), Average Mutual Information (AMI), False Nearest Neighbor (FNN), Lyapunov Exponent (LE), Tsallis Entropy (TS) and Recurrence Plot (RP) are discussed extensively. The RRG data (2011-2012) used in this work were obtained for 0 m to 100 m, from the archives of Tropospheric Data Acquisition Network (TRODAN) from five different stations namely; Akure (Geo. 7.299∘N,5.147∘E), Enugu (Geo. 6.46∘N,7.55∘E), Jos (Geo. 9.90∘N,8.86∘E), Minna (Geo. 9.58∘N,6.55∘E) and Sokoto (Geo. 13.01∘N,5.25∘E). The chaotic quantifiers are used to investigate the degree of complexity in the 30 minutes interval atmospheric data from the selected locations which is specified into rainy, dry and transition season months. The parallel and short diagonal lines observed depicts the evidence of chaos. However, the observed result shows that the RRG is higher during the rainy season than the dry season. In other words, the information is valid for the proposed data analysis, since the LE is actually directly proportional to the TE. Also, the results further show that the rainy season months exhibit higher chaoticity than the dry season months, which is equivalent to high radio refractivity gradient observed across the selected stations.Item Dynamical evolution of vertical profile of rain structures observed using ground-based radar over a tropical station(2021) Ojo JS; Akoma DB; Olurotimi EOIn this study, measurements of vertical profiles of rain parameters have been made using vertically pointing micro rain radar (VPMRR) at Akure (7.30° N, 5.13° E). Rain parameter data collected over seven-month rainfall episodes during the intense rainy season (April to October) have been analyzed for a dynamical evolutionary trend over the site. Nearly all the episodes observed followed a similar pattern, hence, a single continuous rainfall episode occurring between 20:45:00 h and 21:14:00 h Greenwich Meridian Time (GMT) local time on 6th August 2018 is presented in this report. The results show no significant changes to the rain parameters (such as rain rate and liquid water content) nor contributed to the raindrop size distribution, based on average fall velocity of 6.55 m s−1 and rain rates within 1.3 and 2.6 mm h−1. This is to enable a stable fall for the dominant drops during the period. Further, the results revealed the transformation and collision of smaller drops to enhance a stable fall of larger drops during the rain event. The information from the study will be useful for radar meteorologists and microwave engineers in their designs.Item Propagation curves and coverage areas of digital terrestrial television base stations in the tropical zone(2020) Akinbolati A; Ajewole MO; Adediji AT; Ojo JSThis study investigated the propagation curves and coverage areas of some Digital Terrestrial Television Broadcast Stations (DTTBS) over four climatic zones of coastal (Lagos), tropical rain forest (Akure), Sudan Savannah (Kaduna) and Sahel Savannah (Katsina) cities of Nigeria. Measurement of the Received Signal Strength (RSS) was carried out along different routes with each of the DTTBS as reference points. Measurements of RSS were carried out using two specified antenna receiver heights of 1.5 and 3.0 m for each data point. The GPS receiver was used to measure the geographic coordinates, elevation and Line of Sight (LOS) of data points along the routes in a drive test. Measurement was done during dry and wet season months at 1 km interval up to about 20 km in each of the selected routes covering a period of three years (2016–2018). Mean data were obtained and used to generate the propagation curves and the coverage areas over the study locations. Generally, results revealed that RSS undulates with LOS separation distance from DTTBS in all routes irrespective of seasons and routes. Particularly, RSS reduces to about half of its base station's value at about 8 and 12 km LOS from the DTTBS in Akure and Katsina respectively while, it reduces to about half of its base station's value at about 6 km from the DTTBS in Lagos and Kaduna. The implication of this is that higher coverage areas were obtained in suburban compared to urban cities. In addition, radial maps showing coverage areas and their grades useful for networking purposes were generated. Television White Spaces (TVWS) for secondary users were also proposed. For networking purposes and spatial arrangements of DTTBS that will ensure optimum coverage over the study locations, DTTBS can be sited at 8.0 and 13.5 km (LOS) interval from each other in urban and sub urban cities respectively. The overall results will enable system engineers to know the appropriate distance(s) and locations to site additional DTTBS for networking purposes and prepare power budget for optimum coverage area and good quality of services for terrestrial digital channels.