Browsing by Author "Beukes LS"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Biogenic synthesis of silver nanoparticles using a pod extract of Cola nitida: Antibacterial and antioxidant activities and application as a paint additive(2016) Lateef A; Azeez MA; Asafa TB; Yekeen TA; Akinboro A; Oladipo IC; Azeez L; Ajibade SE; Ojo SA; Gueguim-Kana EB; Beukes LSThis work reports the biogenic synthesis of silver nanoparticles (AgNPs) using the pod extract of Cola nitida, the evaluation of their antibacterial and antioxidant activities, and their application as an antimicrobial additive in paint. The AgNPs were characterized with UV–Vis spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, and transmission electron microscopy (TEM). The AgNP solution was dark brown with a maximum absorbance occurring at 431.5nm. The FTIR spectrum showed strong peaks at 3336.85, 2073.48, and 1639.49cm−1, indicating that proteins acted as the capping and stabilization agents in the synthesis of the AgNPs. The AgNPs were spherical, with sizes ranging from 12 to 80nm. Energy dispersive X-ray (EDX) analysis showed that silver was the prominent metal present, while the selected area electron diffraction pattern conformed to the face-centred cubic phase and crystalline nature of AgNPs. At various concentrations between 50 and 150μg/ml, the AgNPs showed strong inhibition of the growth of multidrug resistant strains of Klebsiella granulomatis, Pseudomonas aeruginosa, and Escherichia coli. In addition, at 5μg/ml, the AgNPs completely inhibited the growth of Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Aspergillus niger, A. flavus and A. fumigatus in a paint-AgNP admixture. The AgNPs exhibited a potent antioxidant activity with an IC50 of 43.98μg/ml against 2,2-diphenyl-1-picrylhydrazyl and a ferric ion reduction of 13.62–49.96% at concentrations of 20–100μg/ml. This study has demonstrated the biogenic synthesis of AgNPs that have potent antimicrobial and antioxidant activities and potential biomedical and industrial applications. To the best of our knowledge, this work is the first to use the pod extract of C. nitida for the green synthesis of nanoparticles.Item Multifunctional titanium dioxide nanoparticles biofabricated via phytosynthetic route using extracts of Cola nitida: antimicrobial, dye degradation, antioxidant and anticoagulant activities(2020) Akinola PO; Lateef A; Asafa TB; Beukes LS; Hakeem AS; Irshad HMFirst study of phytosynthesis of TiO2 NPs using the leaf (KL), pod (KP), seed (KS) and seed shell (KSS) extracts of kola nut tree (Cola nitida) is herein reported. The TiO2 NPs were characterized and evaluated for their antimicrobial, dye degradation, antioxidant and anticoagulant activities. The nearly spherical-shaped particles had λmax of 272.5–275.0 nm with size range of 25.00–191.41 nm. FTIR analysis displayed prominent peaks at 3446.79, 1639.49 and 1382.96 cm−1, indicating the involvement of phenolic compounds and proteins in the phytosynthesis of TiO2 NPs. Both SAED and XRD showed bioformation of crystalline anatase TiO2 NPs which inhibited multidrug-drug resistant bacteria and toxigenic fungi. The catalytic activities of the particles were profound, with degradation of malachite green by 83.48–86.28 % without exposure to UV-irradiation, scavenging of DPPH and H2O2by 51.19–60.08 %, and 78.45–99.23 % respectively. The particles as well prevented the coagulation of human blood. In addition to the antimicrobial and dye-degrading activities, we report for the first time the H2O2 scavenging and anticoagulant activities of TiO2 NPs, showing that the particles can be useful for catalytic and biomedical applications.