Browsing by Author "Adekunle AS"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Bromate and trace metal levels in bread loaves from outlets within Ile-Ife Metropolis, Southwestern Nigeria(2014) Oyekunle JA; Adekunle AS; Ogunfowokan AO; Olutona GO; Omolere OBBread loaves randomly sampled from nine outlets and bakeries within Ile-Ife were analysed to determine their safety levels for human consumption with respect to bromate and trace metal contents. Bromate determination was carried out via spectrophotometric method while trace metals in the digested bread samples were profiled using Flame Atomic Absorption Spectrophotometer. Bromate levels in the analyzed bread samples ranged from 2.051 ± 0.011 μg/g to 66.224 ± 0.014 μg/g while the trace metal levels were of the order: 0.03–0.10 μg/g Co = 0.03–0.10 μg/g Pb < 0.23–0.46 μg/g Cu < 2.23–6.63 μg/g Zn < 25.83–75.53 μg/g Mn. This study revealed that many bread bakers around Ile-Ife had not fully complied with the bromate-free rule stipulated by NAFDAC contrary to the “bromate free” inscribed on the labels of the bread. The bread samples contained both essential and toxic trace metals to levels that could threaten the health of consumers over prolonged regular consumption.Item Combustion and emission study of sandbox seed oil biodiesel performance in a compression ignition (CI) engine(2021) Akintunde SB; Obayopo SO; Adekunle AS; Obisesan OR; Olaoye OSTransportation is a crucial aspect of global development and the utilization of fossil fuels in most combustions systems seems inevitable. This class of fuel has led greatly to worldwide environmental pollution with its attendant effects on human health and climate changes. Biofuels from biomass are sustainable and viable alternatives that can eliminate the problems associated with petroleum fuels and are most compatible with the existing combustion systems. Biodiesel will further ensure positive energy equilibrium through the conservation of natural resources to improve economic stability, environmental safety and a balanced ecosystem. Most previous works make use of edible oils, which can lead to food security and price challenges. With the abundance of non-edible oil sources unexploited, the choice of this study is directed towards producing biodiesel from a non-edible seed with little or no information on its combustion properties. This study extracted Sandbox (Hura crepitans) oil chemically using analytical n-hexane as solvent and subsequently produced biodiesel from the oil via one step-transesterification. The biodiesel was characterized according to global standards for biodiesel (ASTM D6751 and EN 14214) and blended with petrodiesel to give five fuel samples (D100, B10, B20, B30 and B100). These fuels were combusted in a compression ignition (CI) engine test bed to determine its performance and emission characteristics. The results showed that the Sandbox seed produced oil with a good oil yield of 47.77% and the biodiesel produced had a yield of 86.49%, which satisfies the recommended global standards. B10 exhibited the best and highest BTE after D100 at all the torque levels (4 Nm, 6 Nm and 7 Nm) as well as the least and the most desirable emission of CO2 when compared with all the other fuels. The utilization of Sandbox biodiesel in combustion ignition engine was found to be a viable option at enhancing biofuel utilization and reduction of pollutant emissions from the present combustion of fossil fuels.Item Determination of polycyclic aromatic hydrocarbon levels of groundwater in Ife north local government area of Osun state, Nigeria(2017) Adekunle AS; Oyekunle JA; Ojo OS; Maxakato NW; Olutona GO; Obisesan ORThis study determined the presence and levels of Polycyclic Aromatic Hydrocarbons (PAHs) of groundwater in Moro, Edun-Abon, Yakoyo and Ipetumodu communities in Ife-North Local Government Area of Osun State. This was with a view to create public awareness about the safety of groundwater as a source for domestic purposes (e.g., drinking, cooking etc.) in non-industrial area. Water samples were collected on seasonal basis, comprising of three months (August–October) in the wet season and three months (December–February) in the dry season. The PAHs in the water samples were extracted with n-hexane using liquid–liquid extraction method, while their qualitative identifications and quantitative estimations were carried out with the use of gas chromatography. Levels of PAHs detected showed predominance of light PAHs (less than four fused rings) for both wet and the dry seasons. Higher concentrations of PAHs were recorded during the wet season than the dry season. The study concluded that the groundwater in the communities was contaminated with light PAHs and the total PAHs in this area exceeded the maximum permissible limit of 10μgL−1 recommended by World Health Organization (WHO) for safety of groundwater.