Browsing by Author "Adekunle AA"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item An Improved multi-objective a-star algorithm for path planning in a large workspace: Design, Implementation, and Evaluation(2022) Martins OO; Adekunle AA; Olaniyan OM; Bolaji BOImproved path planning algorithms should minimize algorithm processing time, increase path smoothness, and shorten path length, all of which will be extremely beneficial for mobile robot traversal in large workspaces. As a result, an improved multi-objective A-star (IMOA-star) algorithm for mobile robot path planning in a large workspace was designed and implemented in Python 3.8.3 in this study. In four test cases, the proposed IMOA-star is evaluated in a large workspace with dimensions of 7120 cm × 9490 cm, and its performance is compared to the traditional A-star. When compared to the traditional A-star, the results showed that IMOA-star reduced the algorithm process time by 99.98%, improved path smoothness by 45%, reduced path length by 1.58%, and reduced the number of random points by 83.45%. Finally, the IMOA-star outperforms the traditional A-star in terms of algorithm processing time, path smoothness, path length, and the number of random points. As a result, it should be considered a viable alternative to the traditional A-star for mobile robot path planning in a large workspace.Item Design, simulation and implementation of a PID vector control for EHVPMSM for an automobile with hybrid technology(2019) Adeoye AO; Oladapo BI; Adekunle AA; Olademeji AJ; Kayode JFThis work proposes a Model design simulation and implementation of a novel engine of an Electric Hybrid Vehicle of Permanent Magnet Synchronous Motor (EHVPMSM) based on field oriented vector control. The experimental analysis was carried out using: automotive motor control MTRCKTSPS5604P, 3-Phase PMSM coded of a single Motor Control Kit with MPC5604P MCU and simulation with Simulink. Therefore, the direct torque control can be obtained by adjusting the magnitude and phase angle of the stator flux linkage to match the vector torque required by the load as fast as possible. This eradicates the stress of charging the vehicle battery. It automatically charges when it is connected to the main supply of the EHVPMSM. The electromagnetic torque can be increased from 0Nm to 6.7Nm in approximately 340μs. The response of speed transient was from −2100rpm to +2100rpm in 100ms of 6.7Nm torque limit. This is a novel way of conserving the energy consumption in a vehicle, which conserves space and weight and minimizes cost as it is simply done with low-cost materials. In this research, a new mathematical model is proposed for the direct and quadrature axis of the current to control the speed mechanism for the engine. Computer simulation ensures experimental validation of the system with a percentage error of 4.5%. The methodology employed to control the system was with the use of various sensors and software controller, this can be easily implemented in industry and institutional laboratory of learning.